Estimation of measures of an additive zero-mean Gaussian noise.
For a given input image
with an additive zero-mean Gaussian noise, the standard deviation is computed as follows :
where
is the image width,
is the image height,
is the convolution operator and
is the difference of Laplacian mask kernel:
- See also
- "Fast Noise Variance Estimation", J. Immerkaer, Computer Vision and Image Understanding, Vol. 64, pp. 300-302, 1996.
Example of Python code :
Example imports
import PyIPSDK
import PyIPSDK.IPSDKIPLGlobalMeasure as glbmsr
Code Example
image = PyIPSDK.loadTiffImageFile(inputImgPath)
gaussianNoiseMsrResult = glbmsr.gaussianNoiseMsr(image)
sigma = gaussianNoiseMsrResult.sigma
Example of C++ code :
Example informations
Header file
#include <IPSDKIPL/IPSDKIPLGlobalMeasure/Processor/GaussianNoiseMsr/GaussianNoiseMsr.h>
Code Example
const ipReal64 sigmaValue = pRes->getValue<GaussianNoiseStats::Sigma>();